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Generative Classifiers
• Goal: Understand what each class 

looks like
• Should be able to “generate” an 

instance from each class
• To classify an instance, determines 

which class model better fits the 
instance, and chooses that as the 
label

I’m just thrilled that I have five 
final exams on the same day. 🙄

Sarcasm Not Sarcasm
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More formally….
• Recall the definition of naïve Bayes:

• 𝑐̂ = argmax
!∈#

𝑃 𝑑 𝑐 𝑃(𝑐)

Likelihood Prior
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More formally….
• Recall the definition of naïve Bayes:

• 𝑐̂ = argmax
!∈#

𝑃 𝑑 𝑐 𝑃(𝑐)

Likelihood Prior

A generative model like naïve Bayes makes use of the likelihood term
• Likelihood: Expresses how to generate an instance if it knows it is of class c
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Discriminative Classifiers
• Goal: Learn to distinguish between 

two classes
• No need to learn that much 

about them individually
• To classify an instance, determines 

whether the distinguishing 
feature(s) between classes is 
present

I’m just thrilled that I have five 
final exams on the same day. 🙄

Contains 
🙄?

Sarcasm
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More formally….
• Recall the definition of naïve Bayes:

• 𝑐̂ = argmax
!∈#

𝑃 𝑑 𝑐 𝑃(𝑐)

Likelihood Prior

A discriminative model instead tries to compute P(c|d) directly!

𝑐̂ = argmax
!∈#

𝑃(𝑐|𝑑)
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This 
Week’s 
Topics
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Tuesday

Logistic regression
Cross-entropy loss 
function
Gradient descent 
optimization

Thursday

Advanced classification 
details
Vector semantics
TF-IDF



This 
Week’s 
Topics
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Tuesday

Logistic regression
Cross-entropy loss 
function
Gradient descent 
optimization

Thursday

Advanced classification 
details
Vector semantics
TF-IDF



Logistic 
Regression

• Discriminative supervised machine 
learning algorithm

• Very close relationship with neural 
networks!

• How does it compare with naïve Bayes?
• Often performs a bit better
• May be more complex to implement
• May take longer to train
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Logistic 
regression 

follows a 
standard setup 
that is reflected 

in most 
discriminative 

learning 
algorithms.

• Feature representation of the input
• Typically, a vector of features [x1(j), x2(j), …, xn(j)] 

for a given instance x(j)

• Classification function that computes the 
estimated class, -𝑦

• Sigmoid
• Softmax
• Etc.

• Objective function or loss function that computes 
error values on training instances

• Cross-entropy loss function
• Optimization function that seeks to minimize the 

loss function
• Stochastic gradient descent
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Binary 
Logistic 

Regression

• Goal:
• Train a classifier that can decide whether a new 

input observation belongs to class a or class b
• To do this, the classifier learns a vector of weights 

(one associated with each input feature) and a bias 
term

• Generalized (multinomial) case → vector of weights 
associated with each class

• In true binary logistic regression we only need to learn 
one set of weights to discriminate between classes

• A given weight indicates how important its 
corresponding feature is to the overall 
classification decision

• Can be positive or negative
• The bias term is a real number that is added to the 

weighted inputs
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Binary 
Logistic 

Regression

• To make a classification decision, the classifier: 
• Multiplies each feature for an input instance x by its 

corresponding weight (learned from the training data)
• Sums the weighted features
• Adds the bias term b

• This results in a weighted sum of evidence for 
the class:

• 𝑧 = 𝑏 +	∑$𝑤$𝑥$

Bias term Weight for feature i Feature i for instance x
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Vector Notation
• Letting 𝑤 be the weight vector and 𝑥 be the input feature vector, 

we can also represent the weighted sum 𝑧 using vector 
notation:

• 𝑧 = 𝒘 $ 𝒙 + 𝑏

Bias termVector of all weights

Vector of all features for x
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How do we map 
from a linear 

weighted sum (z) 
to a probability 

ranging from 0-1?

• Pass z through the sigmoid function, 𝜎(𝑧)
• Also called the logistic function, hence 

the name logistic regression
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Sigmoid Function

• Sigmoid Function:
• 𝜎 𝑥 = !

!"#!"

• Given its name because when plotted, it 
looks like an s

• Results in a value y ranging from 0 to 1
• 𝑦 = 	𝜎 𝑧 = !

!"#!#
= !

!"#!$%"&'

• This function has many useful properties:
• Squashes outliers towards 0 or 1
• Differentiable

Natalie Parde - UIC CS 421 15

Source: https://web.stanford.edu/~jurafsky/slp3/5.pdf

https://web.stanford.edu/~jurafsky/slp3/5.pdf


Probabilities 
for all 
classes 
must sum to 
1.0!



How do we make a 
classification decision?

• Choose a decision boundary
• For binary classification, often 0.5

• For a test instance x, assign a label c if 𝑃(𝑦 = 𝑐|𝑥) is greater than the decision 
boundary
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Example: Sigmoid Classification
I’m just thrilled that I have five 
final exams on the same day. 🙄 Sarcastic or not sarcastic?
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Example: Sigmoid Classification
I’m just thrilled that I have five 
final exams on the same day. 🙄 Sarcastic or not sarcastic?

Feature
Contains 🙄
Contains 😊
Contains “I’m”
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Example: Sigmoid Classification
I’m just thrilled that I have five 
final exams on the same day. 🙄 Sarcastic or not sarcastic?

Feature Weight
Contains 🙄 2.5
Contains 😊 -3.0
Contains “I’m” 0.5
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Example: Sigmoid Classification
I’m just thrilled that I have five 
final exams on the same day. 🙄 Sarcastic or not sarcastic?

Feature Weight
Contains 🙄 2.5
Contains 😊 -3.0
Contains “I’m” 0.5

Positively associated with sarcasm

Negatively associated with sarcasm
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Example: Sigmoid Classification
I’m just thrilled that I have five 
final exams on the same day. 🙄 Sarcastic or not sarcastic?

Feature Weight Value
Contains 🙄 2.5 1
Contains 😊 -3.0 0
Contains “I’m” 0.5 1
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Example: Sigmoid Classification
I’m just thrilled that I have five 
final exams on the same day. 🙄 Sarcastic or not sarcastic?

Bias = 0.1

Natalie Parde - UIC CS 421

Feature Weight Value
Contains 🙄 2.5 1
Contains 😊 -3.0 0
Contains “I’m” 0.5 1
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Example: Sigmoid Classification
I’m just thrilled that I have five 
final exams on the same day. 🙄 Sarcastic or not sarcastic?

𝑧 = 𝑏 +	5
$

𝑤$𝑥$

Bias = 0.1

𝑦 = 	𝜎 𝑧  = %
%&'!"
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Feature Weight Value
Contains 🙄 2.5 1
Contains 😊 -3.0 0
Contains “I’m” 0.5 1
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Example: Sigmoid Classification
I’m just thrilled that I have five 
final exams on the same day. 🙄 Sarcastic or not sarcastic?

𝑧 = 𝑏 +	5
$

𝑤$𝑥$

𝑦 = 	𝜎 𝑧  = %
%&'!"

Bias = 0.1

𝑃 sarcasm 𝑥 = 	𝜎 0.1 + 2.5 ∗ 1 + −3.0 ∗ 0 + 0.5 ∗ 1 = 	𝜎 0.1 + 3.0 = 	𝜎 3.1 =
1

1 + 𝑒().% = 0.96
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Feature Weight Value
Contains 🙄 2.5 1
Contains 😊 -3.0 0
Contains “I’m” 0.5 1
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Example: Sigmoid Classification
I’m just thrilled that I have five 
final exams on the same day. 🙄 Sarcastic or not sarcastic?

𝑧 = 𝑏 +	5
$

𝑤$𝑥$

𝑦 = 	𝜎 𝑧  = %
%&'!"

Bias = 0.1

𝑃 sarcasm 𝑥 = 	𝜎 0.1 + 2.5 ∗ 1 + −3.0 ∗ 0 + 0.5 ∗ 1 = 	𝜎 0.1 + 3.0 = 	𝜎 3.1 =
1

1 + 𝑒().% = 0.96
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Feature Weight Value
Contains 🙄 2.5 1
Contains 😊 -3.0 0
Contains “I’m” 0.5 1
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Any useful (or not useful) property of 
the language sample can be a feature!

• For example….
• Specific words or n-grams
• Information from external lexicons
• Grammatical elements
• Part-of-speech tags
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Learning in Logistic Regression

• How are the parameters of a logistic regression model, w and 
b, learned?

• Loss function
• Optimization function

• Goal: Learn parameters that make !𝑦 for each training 
observation as close as possible to the true 𝑦
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This 
Week’s 
Topics
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Tuesday

Logistic regression
Cross-entropy loss 
function
Gradient descent 
optimization

Thursday

Advanced classification 
details
Vector semantics
TF-IDF



Loss Function

Natalie Parde - UIC CS 421

• We need to determine the distance between the predicted and true output 
value

• How much does )𝑦 differ from 𝑦?
• We do this using a conditional maximum likelihood estimation

• Select w and b such that they maximize the log probability of the true y 
values in the training data, given their observations x

• This results in a negative log likelihood loss
• More commonly referred to as cross-entropy loss

30



Cross-Entropy Loss
• Measures the distance between the probability distributions of predicted and 

actual values
• 𝑙𝑜𝑠𝑠 𝑦$ , +𝑦$ = −∑%&!

' 𝑝$,% log 2𝑝$,%
• C is the set of all possible classes
• 𝑝$,% is the actual probability that instance i should be labeled with 

class c
• 2𝑝$,% is the predicted probability that instance i should be labeled with 

class c
• Observations with a big distance between the predicted and actual values 

have much higher cross-entropy loss than observations with only a small 
distance between the two values
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Example: Cross-Entropy Loss

Sarcastic Not Sarcastic
I’m just thrilled that I have five 
final exams on the same day. 🙄
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Example: Cross-Entropy Loss

Instance
Predicted 

Probability: 
Sarcastic

Predicted 
Probability: Not 

Sarcastic

Actual 
Probability: 
Sarcastic

Actual 
Probability: Not 

Sarcastic
I’m just thrilled that 
I have five final 
exams on the 
same day. 🙄

1 0

Sarcastic Not Sarcastic
I’m just thrilled that I have five 
final exams on the same day. 🙄
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Example: Cross-Entropy Loss

Instance
Predicted 

Probability: 
Sarcastic

Predicted 
Probability: Not 

Sarcastic

Actual 
Probability: 
Sarcastic

Actual 
Probability: Not 

Sarcastic
I’m just thrilled that 
I have five final 
exams on the 
same day. 🙄

0.96 0.04 1 0

Sarcastic Not Sarcastic
I’m just thrilled that I have five 
final exams on the same day. 🙄
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Example: Cross-Entropy Loss

Instance
Predicted 

Probability: 
Sarcastic

Predicted 
Probability: Not 

Sarcastic

Actual 
Probability: 
Sarcastic

Actual 
Probability: Not 

Sarcastic
I’m just thrilled that 
I have five final 
exams on the 
same day. 🙄

0.96 0.04 1 0

𝑙𝑜𝑠𝑠 𝑦$ , 𝑦$′ = −5
!+%

#

𝑝$,! log M𝑝$,! = −𝑝$,-./!.-0$! log N𝑝$,-./!.-0$! − 𝑝$,120	-./!.-0$! log N𝑝$,120	-./!.-0$!

Sarcastic Not Sarcastic
I’m just thrilled that I have five 
final exams on the same day. 🙄
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Example: Cross-Entropy Loss

Instance
Predicted 

Probability: 
Sarcastic

Predicted 
Probability: Not 

Sarcastic

Actual 
Probability: 
Sarcastic

Actual 
Probability: Not 

Sarcastic
I’m just thrilled that 
I have five final 
exams on the 
same day. 🙄

0.96 0.04 1 0

𝑙𝑜𝑠𝑠 𝑦$ , 𝑦$′ = −5
!+%

#

𝑝$,! log M𝑝$,! = −𝑝$,-./!.-0$! log N𝑝$,-./!.-0$! − 𝑝$,120	-./!.-0$! log N𝑝$,120	-./!.-0$!

  𝑙𝑜𝑠𝑠 𝑦$ , 𝑦$′ = −1 ∗ log 0.96 − 0 ∗ log 0.04 

Sarcastic Not Sarcastic
I’m just thrilled that I have five 
final exams on the same day. 🙄
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Example: Cross-Entropy Loss

Instance
Predicted 

Probability: 
Sarcastic

Predicted 
Probability: Not 

Sarcastic

Actual 
Probability: 
Sarcastic

Actual 
Probability: Not 

Sarcastic
I’m just thrilled that 
I have five final 
exams on the 
same day. 🙄

0.96 0.04 1 0

𝑙𝑜𝑠𝑠 𝑦$ , 𝑦$′ = −5
!+%

#

𝑝$,! log M𝑝$,! = −𝑝$,-./!.-0$! log N𝑝$,-./!.-0$! − 𝑝$,120	-./!.-0$! log N𝑝$,120	-./!.-0$!

  𝑙𝑜𝑠𝑠 𝑦$ , 𝑦$′ = −1 ∗ log 0.96 − 0 ∗ log 0.04 = − log 0.96 = 0.02

Sarcastic Not Sarcastic
I’m just thrilled that I have five 
final exams on the same day. 🙄
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Example: Cross-Entropy Loss

Instance
Predicted 

Probability: 
Sarcastic

Predicted 
Probability: Not 

Sarcastic

Actual 
Probability: 
Sarcastic

Actual 
Probability: Not 

Sarcastic
I’m just thrilled that 
I have five final 
exams on the 
same day. 🙄

1 0

Sarcastic Not Sarcastic
I’m just thrilled that I have five 
final exams on the same day. 🙄

What if our predicted values were switched?
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Example: Cross-Entropy Loss

Instance
Predicted 

Probability: 
Sarcastic

Predicted 
Probability: Not 

Sarcastic

Actual 
Probability: 
Sarcastic

Actual 
Probability: Not 

Sarcastic
I’m just thrilled that 
I have five final 
exams on the 
same day. 🙄

0.04 0.96 1 0

𝑙𝑜𝑠𝑠 𝑦$ , 𝑦$′ = −5
!+%

#

𝑝$,! log M𝑝$,! = −𝑝$,-./!.-0$! log N𝑝$,-./!.-0$! − 𝑝$,120	-./!.-0$! log N𝑝$,120	-./!.-0$!

  𝑙𝑜𝑠𝑠 𝑦$ , 𝑦$′ = −1 ∗ log 0.04 − 0 ∗ log 0.96 = − log 0.04 = 1.40

Sarcastic Not Sarcastic
I’m just thrilled that I have five 
final exams on the same day. 🙄

Greater loss value!
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This 
Week’s 
Topics
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Tuesday

Logistic regression
Cross-entropy loss 
function
Gradient descent 
optimization

Thursday

Advanced classification 
details
Vector semantics
TF-IDF



Finding Optimal Weights

• Goal: Minimize the loss function defined for the model
• *𝜃 = argmin

!

"
#
∑$%"# 𝐿&'(𝑦 $ , 𝑥 $ ; 𝜃)

• For logistic regression, 𝜃 = 𝑤, 𝑏
• One way to do this is by using gradient descent
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Gradient Descent
• Finds the minimum of a function by 

moving in the opposite direction of 
the function’s slope

• For logistic regression, loss functions 
are convex

• Only one minimum
• Gradient descent starting at any point is 

guaranteed to find it

weight

loss

wi

Should I move 
right or left?
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Gradient Descent
• Finds the minimum of a function by 

moving in the opposite direction of 
the function’s slope

• For logistic regression, loss functions 
are convex

• Only one minimum
• Gradient descent starting at any point is 

guaranteed to find it

weight

loss

wi

Should I move 
right or left?

Negative slope
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Gradient Descent
• Finds the minimum of a function by 

moving in the opposite direction of 
the function’s slope

• For logistic regression, loss functions 
are convex

• Only one minimum
• Gradient descent starting at any point is 

guaranteed to find it

weight

loss

wi

Should I move 
right or left?

Negative slope

Move in positive direction
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Gradient Descent
• Finds the minimum of a function by 

moving in the opposite direction of 
the function’s slope

• For logistic regression, loss functions 
are convex

• Only one minimum
• Gradient descent starting at any point is 

guaranteed to find it

weight

loss

wi+1

Okay!
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Gradient Descent
• How much do we move?

• Value of the slope
• $
$%
𝑓(𝑥;𝑤)

• Weighted by a learning rate 𝜂
• Faster learning rate → move w more 

on each step
• So, the change to a weight is 

actually:
• 𝑤PQR = 𝑤P − 𝜂 S

ST 𝑓(𝑥;𝑤)

weight

loss

wt+1

Natalie Parde - UIC CS 421

Derivative of loss function curve 
with respect to a given weight
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Remember, there are weights for each 
feature.

• The gradient is then a vector of the slopes of each dimension:

• ∇U𝐿 𝑓 𝑥; 𝜃 , 𝑦 =

S
ST!

𝐿(𝑓 𝑥; 𝜃 , 𝑦)
…

S
ST"

𝐿(𝑓 𝑥; 𝜃 , 𝑦)

• This in turn means that the final equation for updating 𝜃 is:
• 𝜃PQR = 𝜃P − 𝜂∇𝐿(𝑓 𝑥; 𝜃 , 𝑦)
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The Gradient for Logistic 
Regression

• Recall our cross-entropy loss function:
• 𝑙𝑜𝑠𝑠 𝑦$ , ;𝑦$ = −∑(%"

& 𝑦 log )𝑦 = −∑(%"
& 𝑦 log 𝜎(𝒘 A 𝒙 + 𝑏)

• The derivative for this function is:
• )*45(,,.)

),6
= 𝜎 𝒘 A 𝒙 + 𝑏 − 𝑦 𝑥0

Difference between true and estimated y Corresponding input observation
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Stochastic Gradient Descent 
Algorithm
𝜃←0  # initialize weights to 0
repeat until convergence:
 For each training instance (𝑥($), 𝑦($)) in random order:
  # What is our gradient, given our current parameters?
  g ← ∇!𝐿 𝑓 𝑥($); 𝜃 , 𝑦($)   

  𝜃 ← 𝜃 − 𝜂g  # What are our updated parameters?
 return 𝜃
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Example: Gradient Descent (First Step)
I’m just thrilled that I have five 
final exams on the same day. 🙄 Sarcastic

Feature Weight Value
Contains 🙄 0 1
Contains 😊 0 0
Contains “I’m” 0 1
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Example: Gradient Descent (First Step)
I’m just thrilled that I have five 
final exams on the same day. 🙄 Sarcastic

Bias (b) = 0
Learning rate (𝜂) = 0.1

𝜃0&% = 𝜃0 − 𝜂∇7𝐿 𝑓 𝑥($); 𝜃 , 𝑦($)

Natalie Parde - UIC CS 421

Feature Weight Value
Contains 🙄 0 1
Contains 😊 0 0
Contains “I’m” 0 1
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Example: Gradient Descent (First Step)
I’m just thrilled that I have five 
final exams on the same day. 🙄 Sarcastic

Bias (b) = 0
Learning rate (𝜂) = 0.1

𝜃0&% = 𝜃0 − 𝜂∇7𝐿 𝑓 𝑥($); 𝜃 , 𝑦($)

∇(𝐿 𝑓 𝑥(*); 𝜃 , 𝑦(*) =

𝑑𝐿,-(𝑤, 𝑏)
𝑑𝑤.

𝑑𝐿,-(𝑤, 𝑏)
𝑑𝑤/

𝑑𝐿,-(𝑤, 𝑏)
𝑑𝑤0

𝑑𝐿,-(𝑤, 𝑏)
𝑑𝑏

=

(𝜎 𝒘 3 𝒙 + 𝑏 − 𝑦)𝑥.
(𝜎 𝒘 3 𝒙 + 𝑏 − 𝑦)𝑥/
(𝜎 𝒘 3 𝒙 + 𝑏 − 𝑦)𝑥0
𝜎 𝒘 3 𝒙 + 𝑏 − 𝑦	

=

(𝜎 0 − 1)𝑥.
(𝜎 0 − 1)𝑥/
(𝜎 0 − 1)𝑥0
𝜎 0 − 1

=

(0.5 − 1)𝑥.
(0.5 − 1)𝑥/
(0.5 − 1)𝑥0
(0.5 − 1)	

=
−0.5 ∗ 1
−0.5 ∗ 0
−0.5 ∗ 1
−0.5

=
−0.5
0

−0.5
−0.5

Natalie Parde - UIC CS 421

Feature Weight Value
Contains 🙄 0 1
Contains 😊 0 0
Contains “I’m” 0 1
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Recall: )*12(,,-)
),3

= 𝜎 𝒘 4 𝒙 + 𝑏 − 𝑦 𝑥/ Recall: 𝜎 𝑧  = !
!"#!#



Example: Gradient Descent (First Step)
I’m just thrilled that I have five 
final exams on the same day. 🙄 Sarcastic

Bias (b) = 0
Learning rate (𝜂) = 0.1

𝜃0&% = 𝜃0 − 𝜂∇7𝐿 𝑓 𝑥($); 𝜃 , 𝑦($)

∇(𝐿 𝑓 𝑥(*); 𝜃 , 𝑦(*) =
−0.5
0

−0.5
−0.5

𝜃45. = 𝜃4 − 𝜂∇(𝐿 𝑓 𝑥 * ; 𝜃 , 𝑦 * =
0
0
0
0

− 𝜂
−0.5
0

−0.5
−0.5

	 = 	
0
0
0
0

− 0.1
−0.5
0

−0.5
−0.5

	 = 	
0
0
0
0

−
−0.05
0

−0.05
−0.05

	 = 	
0.05
0
0.05
0.05
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Feature Weight Value
Contains 🙄 0 1
Contains 😊 0 0
Contains “I’m” 0 1
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Example: Gradient Descent (First Step)
I’m just thrilled that I have five 
final exams on the same day. 🙄 Sarcastic

Bias (b) = 0
Learning rate (𝜂) = 0.1

𝜃0&% = 𝜃0 − 𝜂∇7𝐿 𝑓 𝑥($); 𝜃 , 𝑦($)

∇(𝐿 𝑓 𝑥(*); 𝜃 , 𝑦(*) =
−0.5
0

−0.5
−0.5

𝜃45. = 𝜃4 − 𝜂∇(𝐿 𝑓 𝑥 * ; 𝜃 , 𝑦 * =
0
0
0
0

− 𝜂
−0.5
0

−0.5
−0.5

=
0
0
0
0

− 0.1
−0.5
0

−0.5
−0.5

=
0
0
0
0

−
−0.05
0

−0.05
−0.05

=
0.05
0
0.05
0.05
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Example: Gradient Descent (Second Step)
I’m just thrilled that I have five 
final exams on the same day. 🙄 Sarcastic

Bias (b) = 0.05
Learning rate (𝜂) = 0.1

𝜃0&% = 𝜃0 − 𝜂∇7𝐿 𝑓 𝑥($); 𝜃 , 𝑦($)

∇!𝐿 𝑓 𝑥(#); 𝜃 , 𝑦(#) =

𝑑𝐿%&(𝑤, 𝑏)
𝑑𝑤'

𝑑𝐿%&(𝑤, 𝑏)
𝑑𝑤(

𝑑𝐿%&(𝑤, 𝑏)
𝑑𝑤)

𝑑𝐿%&(𝑤, 𝑏)
𝑑𝑏

=

(𝜎 𝒘 3 𝒙 + 𝑏 − 𝑦)𝑥'
(𝜎 𝒘 3 𝒙 + 𝑏 − 𝑦)𝑥(
(𝜎 𝒘 3 𝒙 + 𝑏 − 𝑦)𝑥)
𝜎 𝒘 3 𝒙 + 𝑏 − 𝑦	

=

(𝜎 0.05 ∗ 1 + 0 ∗ 0 + 0.05 ∗ 1 + .05 − 1)𝑥'
(𝜎 0.05 ∗ 1 + 0 ∗ 0 + 0.05 ∗ 1 + .05 − 1)𝑥(
(𝜎 0.05 ∗ 1 + 0 ∗ 0 + 0.05 ∗ 1 + .05 − 1)𝑥)
𝜎 0.05 ∗ 1 + 0 ∗ 0 + 0.05 ∗ 1 + .05 − 1

=

(𝜎 0.15 − 1)𝑥'
(𝜎 0.15 − 1)𝑥(
(𝜎 0.15 − 1)𝑥)
𝜎 0.15 − 1

=

(0.54 − 1)𝑥'
(0.54 − 1)𝑥(
(0.54 − 1)𝑥)
(0.54 − 1)	

=
−0.46 ∗ 1
−0.46 ∗ 0
−0.46 ∗ 1
−0.46

=
−0.46
0

−0.46
−0.46
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Feature Weight Value
Contains 🙄 0.05 1
Contains 😊 0 0
Contains “I’m” 0.05 1
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Example: Gradient Descent (Second Step)
I’m just thrilled that I have five 
final exams on the same day. 🙄 Sarcastic

Bias (b) = 0.05
Learning rate (𝜂) = 0.1

𝜃0&% = 𝜃0 − 𝜂∇7𝐿 𝑓 𝑥($); 𝜃 , 𝑦($)

∇(𝐿 𝑓 𝑥(*); 𝜃 , 𝑦(*) =
−0.46
0

−0.46
−0.46

𝜃45. = 𝜃4 − 𝜂∇(𝐿 𝑓 𝑥 * ; 𝜃 , 𝑦 * =
0.05
0
0.05
0.05

− 𝜂
−0.46
0

−0.46
−0.46

=
0.05
0
0.05
0.05

− 0.1
−0.46
0

−0.46
−0.46

=
0.05
0
0.05
0.05

−
−0.046
0

−0.046
−0.046

=
0.096
0

0.096
0.096
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Mini-Batch Training
• Stochastic gradient descent chooses a single random example at a time …this can result in 

choppy movements!
• Often, the gradient will be computed over batches of training instances rather than a single 

instance
• Batch training: Gradient is computed over the entire dataset

• Perfect direction, but very computationally expensive
• Mini-batch training: Cross-entropy loss and gradient are computed over a group of m 

examples
• 𝐿?@ training	samples = −∑ABCD 𝐿?@( 7𝑦 A , 𝑦(A))
• EF

EG!
= C

D
∑ABCD 𝜎 𝑤 = 𝑥 A + 𝑏 − 𝑦(A) 𝑥H

(A)
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Regularization

• To avoid overfitting, regularization terms (𝑅(𝜃)) can also be added to the loss 
function to penalize large weights (which can hinder a model’s ability to generalize)

• Two common regularization terms:
• L2 regularization

• Quadratic function of the weight values
• Square of the L2 norm (Euclidean distance of 𝜃 from the origin)

• 𝑅 𝜃 = 𝜃 /
/ = ∑67.

8 𝜃6/

• Easier to optimize
• Good for weight vectors with many small weights

• L1 regularization
• Linear function of the weight values
• Sum of the absolute values of the weights (Manhattan distance from 

the origin)
• 𝑅 𝜃 = 𝜃 . = ∑*7.

8 𝜃*
• Good for sparse weight vectors with some larger weights
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Interpreting 
Models

• What if we want to know more than just the correct classification?
• Why did the classifier make the decision it made?

• In these cases, we can say we want our model to be interpretable
• We can interpret logistic regression models by determining how much weight is 

associated with a given feature

Natalie Parde - UIC CS 421 59



How do we evaluate 
logistic regression 
classifiers?
• Same way as naïve Bayes 

(and all other) text 
classifiers!

• Precision
• Recall
• F1
• Accuracy
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Summary: Logistic Regression
• Logistic regression is a discriminative classification model used for supervised machine learning
• It is characterized by four key components:

• Feature representation
• Classification function
• Loss function
• Optimization function

• Classification decisions are made using a sigmoid function
• Loss is typically computed using a cross-entropy function

• Weights are usually optimized using stochastic gradient descent
• A regularization term may be added to the loss function to avoid overfitting

• In addition to serving as a simple classifier and a useful foundation for neural networks, logistic regression can function as a 
powerful analytic tool
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This 
Week’s 
Topics
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Tuesday

Logistic regression
Cross-entropy loss 
function
Gradient descent 
optimization

Thursday

Advanced classification 
details
Vector semantics
TF-IDF



Training, 
Validation, 
and Test 
Sets

• Text corpora should generally be divided into 
three separate subsets (sometimes called 
splits or folds):

• Training: Used to train the classification 
model

• Validation: Used to check performance 
while developing the classification model

• Test: Used to check performance only 
after model development is finished

• The percentage of data in each fold can vary
• In many cases, researchers like to 

reserve 75% or more of their corpus for 
training, and split the remaining data 
between validation and test
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Why is a 
validation 

set 
necessary?



What if the entire dataset 
is pretty small?



Cross-
Validation66

N
at
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ie
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S 

42
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• Most commonly, k=10 in cross-validation
• Referred to as 10-fold cross-

validation
• One problem with cross-validation?

• To avoid overfitting, we can’t look at 
any of the data because it’s technically 
all test data!

• To avoid this issue, we can:
• Create a fixed training set and test set
• Perform k-fold cross-validation on the 

training set (where it’s fine to look at 
the data) while developing the model

• Evaluate the model on the test set as 
usual, training on the entire training set



• Binary
• Class A vs. Class B

• Multinomial
• Class A vs. Class B vs. Class C vs. Class 

D….

vs.

vs. vs. vs.
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What about more advanced settings?

Logistic regression can be used for binary 
classification, multilabel classification, or 
multinomial classification.



Multinomial Logistic 
Regression

• Other names:
• Softmax regression
• Maxent classification (short for maximum entropy classification)

• Uses a softmax function rather than a sigmoid function
• Softmax takes a vector z of arbitrary values (same as the sigmoid function) and 

maps them to a probability distribution summing to 1
• softmax 𝑧$ = '"I

∑JKL
|z| '"J
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One vs. All 
Classification

• If we don’t want to build a true multinomial 
model, we can also build multiple one vs. all 
classifiers

• How do we do this?
• Build separate binary classifiers for 

each class
• Run each classifier on the test 

document
• Choose the label from the classifier 

with the highest score

🙂 vs. ☹😠😨🤢😮 ☹ vs. 🙂😠😨🤢😮 😠 vs. ☹🙂😨🤢😮
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Multi-Label 
Classification

• Each document can be assigned more than 
one label

• How do we do this?
• Build separate binary classifiers for each 

class
• Positive class vs. every other class

• Run each classifier on the test document
• Each classifier makes its decision 

independently of the other classifiers, 
therefore allowing multiple labels to 
be assigned to the document

🙂 vs. ☹😠😨🤢😮 ☹ vs. 🙂😠😨🤢😮 😠 vs. ☹🙂😨🤢😮
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Multi-Class Contingency Matrix
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Multi-Class Precision

a b c

d e f

g h i

Actual
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Precision = _
_Q`Qa
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Multi-Class Recall

a b c
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_Q`Qa

Recall = _
_QSQb
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Macroaveraging 
and 
Microaveraging

• We can check the system’s overall 
performance in multi-class 
classification settings by combining all 
of the precision values (or all of the 
recall values) in two ways:

• Macroaveraging
• Microaveraging

• Macroaveraging: Compute the 
performance for each class, and then 
average over all classes

• Microaveraging: Collect decisions for 
all classes into a single contingency 
table, and compute precision and recall 
from that table

N
atalie Parde - U
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Macroaveraging
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Macroaveraging
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Macroaveraging
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Microaveraging
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Microaveraging
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What’s better: 
Microaveraging or 
macroaveraging?

• Depends on the scenario!
• Microaverages tend to be dominated by 

more frequent classes, since the counts 
are all pooled together

• Macroaverages are evenly distributed 
across classes

• Thus, if performance on all classes is 
equally important, macroaveraging is 
probably better; if performance on the 
most frequent class is more important, 
microaveraging is probably better

N
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Statistical 
Significance 
Testing



Null Hypothesis



P-Value

Natalie Parde - UIC CS 421 83

The probability that we’ll 
see equally big 

performance differences 
by chance is referred to 

as the p-value

If the p-value is 
sufficiently low 

(generally 0.05 or 0.01), 
then we can reject the 

null hypothesis

If we reject the null 
hypothesis, that means 
that we have identified 

a statistically 
significant difference 

between the 
performance of Model A 

and Model B



How do we determine our p-
value?

• We can select from among many possible methods based on several factors
• Distribution of our data
• Number of samples in our dataset

• Most NLP tasks do not involve data from a known distribution
• Because of this, it’s common to use non-parametric tests to determine 

statistical significance:
• Bootstrap test
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Bootstrap Test

• Repeatedly draws many small samples from the test set, with replacement

• Assumes each sample is representative of the overall population

• For each sample, checks to see how well Model A and Model B perform on it

• Keeps a running total of the number of samples for which the difference 
between Model A’s and Model B’s performance is more than twice as much as 
the difference between Model A’s and Model B’s performance in the overall 
test set

• Divides the final total by the total number of samples checked to determine the 
p-value
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Formal Algorithm: Bootstrap Test
Calculate 𝛿(x)  # Performance difference between Models A and B
for i = 1 to b do:  # b = number of samples

 for j = 1 to n do:  # n = size of bootstrap sample

  Randomly select a test instance and add it to the 

  bootstrap sample

 Calculate 𝛿(x*(i))  # Performance difference between Models A 
     # and B for the bootstrap sample x*(i)

for each x*(i):

 s = s+1 if 𝛿(x*(i)) > 2𝛿(x)
p(x) = s/b
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Interested in learning more about statistical 
significance testing in NLP?

https://aclanthology.org/P18-1128.pdf

https://www.morganclaypool.com/doi/10.2200/S009
94ED1V01Y202002HLT045
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This 
Week’s 
Topics
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Tuesday

Logistic regression
Cross-entropy loss 
function
Gradient descent 
optimization

Thursday

Advanced classification 
details
Vector semantics
TF-IDF



Vector Semantics
• Facilitates a form of representation 

learning based on the notion that similar 
words tend to occur in similar environments

• This notion is known as the distributional 
hypothesis, which was first formulated 
by linguists in the 1950s

• Joos (1950)
• Harris (1954)
• Firth (1957)

• Self-supervised

Natalie Parde - UIC CS 421 89

https://asa.scitation.org/doi/10.1121/1.1906674
https://www.tandfonline.com/doi/pdf/10.1080/00437956.1954.11659520
http://cs.brown.edu/courses/csci2952d/readings/lecture1-firth.pdf


Vector Semantics

For my assignment I’m writing a scathing critique of Dr. Parde’s recent paper.

For my assignment I’m writing a scathing review of Dr. Parde’s recent paper.
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Vector Semantics

For my assignment I’m writing a scathing critique of Dr. Parde’s recent paper.

For my assignment I’m writing a scathing review of Dr. Parde’s recent paper.
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Vector Semantics

For my assignment I’m writing a scathing critique of Dr. Parde’s recent paper.

For my assignment I’m writing a scathing review of Dr. Parde’s recent paper.

1 0 0 0 1 1 0 1 0 1 1 0 0 0 1 1 0 1 0 1

Natalie Parde - UIC CS 421 92



There are many 
ways to make 
use of the 
distributional 
hypothesis!

• Classical word vectors
• Bag of words representations and 

their variations
• Implicitly learned word vectors

• Word2Vec
• GloVe

• All of these approaches seek to 
encode the same linguistic 
phenomena observed in studies of 
lexical semantics
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Lemmas 
and 
Senses

• Lemma: The base form of a word
• Papers → paper
• Mice → mouse

• Word Sense: Different aspects of meaning for a word
• Mouse (1): A small rodent
• Mouse (2): A device to control a computer cursor

• Words with the same lemma should (hopefully!) reside near one 
another in vector space

• Words with the same sense might also reside near one another in 
vector space, depending on the representation learning technique
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Synonymy

• When a word sense for one word is 
(nearly) identical to the word sense for 
another word

• Synonymy: Two words are synonymous if 
they are substitutable for one another in 
any sentence without changing the 
situations in which the sentence would be 
true

• This means that the words have the 
same propositional meaning

For my assignment I’m writing a scathing critique of Dr. 
Parde’s recent paper.

For my assignment I’m writing a scathing review of Dr. 
Parde’s recent paper.
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Word Similarity and Relatedness

• Word similarity: Words are not synonyms, but they can 
be used in the same contexts as one another

• Word Relatedness: Words are associated with one 
another based on their shared participation in an event

coffee
cup

espresso
cafe
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Natalie grabbed the purple coffee mug.

Natalie grabbed the green coffee mug.



Semantic 
Frames

• Semantic Frame: A set of words that denote 
perspectives or participants in a particular 
type of event

• Commercial Transaction = {buyer, seller, 
goods, money}

• Semantic Role: A participant’s underlying 
role with respect to the main verb in the 
sentence

Natalie bought five cookies for $5 from Devika.

buyer goods money seller
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Connotation
• Also referred to as affective 

meaning
• The aspects of a word’s meaning 

that are related emotions, sentiment, 
opinions, or evaluations

• Valence: Positivity
• High: Happy, satisfied
• Low: Unhappy, annoyed

• Arousal: Intensity of emotion
• High: Excited, frenzied
• Low: Relaxed, calm

• Dominance: Degree of control
• High: Important, 

controlling
• Low: Awed, influenced

Natalie Parde - UIC CS 421 98

Valence Arousal Dominance

courageous 8.05 5.5 7.38

music 7.67 5.57 6.5

heartbreak 2.45 5.65 3.58

cub 6.71 3.95 4.24

life 6.68 5.59 5.89

Word vector! (Osgood et al., 1957)

https://psycnet.apa.org/record/1958-01561-000


How, then, 
should we 
represent 

the meaning 
of a word?

• Many, many approaches!
• Two classic strategies:

• Bag of words representations: A word 
is a string of letters, or an index in a 
vocabulary list

• Logical representation: A word defines 
its own meaning (“dog” = DOG)
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How, then, 
should we 
represent 

the meaning 
of a word?

• Many, many approaches!
• Two classic strategies:

• Bag of words representations: A word 
is a string of letters, or an index in a 
vocabulary list

• Logical representation: A word defines 
its own meaning (“dog” = DOG)
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Bag of words 
features 
implement a 
simple form 
of vector 
semantics.

• Two words with very similar sets of 
contexts (i.e., similar distributions of 
neighboring words) are assumed to 
have very similar meanings

• We represent this context using vectors
• For bag of words:

• Define a word as a single vector point in an 
n-dimensional space, where n = vocabulary 
size

• The value stored in a dimension n 
corresponds to the presence of a context 
word c in the same sample as the target 
word w
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The goal is for 
the values in 
these vector 
representations 
to correspond 
with dimensions 
of meaning.

• Assuming this is the case, 
we should be able to:

• Cluster vectors into 
semantic groups

• Perform operations 
that are semantically 
intuitive

review
critique summary

valentine’s

holi

eid
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The goal is for 
the values in 
these vector 
representations 
to correspond 
with dimensions 
of meaning.

• Assuming this is the case, 
we should be able to:

• Cluster vectors into 
semantic groups

• Perform operations 
that are semantically 
intuitive analysis

critique

summary

+

=
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This 
Week’s 
Topics
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Tuesday

Logistic regression
Cross-entropy loss 
function
Gradient descent 
optimization

Thursday

Advanced classification 
details
Vector semantics
TF-IDF



Another 
approach 
for learning 
context 
using “bag 
of words” 
style 
vectors?
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• TF-IDF:
• Term Frequency * Inverse Document 

Frequency
• Meaning of a word is defined by the counts 

of words in the same document, as well as 
overall



TF-IDF originated as a tool for 
information retrieval.

• Rows: Words in a vocabulary
• Columns: Documents in a corpus

As You 
Like It

Twelfth 
Night

Julius 
Caesar Henry V
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TF-IDF originated as a tool for 
information retrieval.

• Rows: Words in a vocabulary
• Columns: Documents in a 

selection

As You 
Like It

Twelfth 
Night

Julius 
Caesar Henry V

As You 
Like It

Twelfth 
Night

Julius 
Caesar

Henry V

battle 1 0 7 13

good 114 80 62 89

fool 36 58 1 4

wit 20 15 2 3

“wit” appears 3 times in Henry V
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In a term-document matrix, rows can be 
viewed as word vectors.

• Each dimension 
corresponds to a 
document

• Words with similar 
vectors occur in similar 
documents

• This would be one way to 
define term frequency 
vectors

As You 
Like It

Twelfth 
Night

Julius 
Caesar

Henry 
V

battle 1 0 7 13

good 114 80 62 89

fool 36 58 1 4

wit 20 15 2 3
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In a term-document matrix, rows can be 
viewed as word vectors.

As You 
Like It

Twelfth 
Night

Julius 
Caesar

Henry 
V

battle 1 0 7 13

good 114 80 62 89

fool 36 58 1 4

wit 20 15 2 3

Julius Caesar

H
en

ry
 V

battle [7, 13]

good [62, 89]

fool [1, 4]
wit [2, 3]
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Different 
Types of 
Context

• We can also use word context for vector 
representations

• Context can be defined however you’d like (e.g., 
context = entire document, or context = predetermined 
span length surrounding target word)

• In this type of word-word matrix, the columns 
are also labeled by words

• Thus, dimensionality is |V| x |V|
• Each cell records the number of times the 

row (target) word and the column (context) 
word co-occur in some context in a training 
corpus
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Example Context Window (Size = 4)

• Take each occurrence of a word (e.g., strawberry)
• Count the context words in the four-word spans before and after it 

to get a word-word co-occurrence matrix

is traditionally followed by cherry pie, a traditional dessert

often mixed, such as strawberry rhubarb pie. Apple pie

computer peripherals and personal digital assistants. These devices usually

a computer. This includes information available on the internet
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Sometimes, 
raw co-
occurrence 
frequency 
vectors 
don’t give 
us the most 
useful 
information.
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• Some words co-occur frequently with 
many words, so won’t be very 
informative

• the, it, they
• We want to know about words that co-

occur frequently with one another, but 
less frequently across all texts



TF-IDF is 
here to save 

the day!

• Term Frequency: The frequency of the 
word t in the document d

• 𝑡𝑓P,S = count(𝑡, 𝑑)
• Document Frequency: The number of 

documents in which the word t occurs
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Computing TF-IDF

• Inverse Document Frequency: The inverse of document frequency, where N is the total 
number of documents in the collection

• 𝑖𝑑𝑓A =
B
$C0

• IDF is higher when the term occurs in fewer documents
• Document = Whatever is considered an instance or context in your dataset

• It is often useful to perform these computations in log space
• TF: logDE(𝑡𝑓A,$+1) → Make sure to smooth so you don’t try to take the log of 0!
• IDF: logDE 𝑖𝑑𝑓A
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Computing TF*IDF

• TF-IDF combines TF and 
IDF

• 𝑡𝑓𝑖𝑑𝑓P,S = 𝑡𝑓P,S×𝑖𝑑𝑓P

11
5



Example: 
Computing 

TF-IDF
• TF-IDF(battle, d1) = ?

d1 d2 d3 d4

battle 1 0 7 13

good 114 80 62 89

fool 36 58 1 4

wit 20 15 2 3
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Assume we’re looking at a 
subset of a 37-document 
corpus of Shakespearean 
plays….



• TF-IDF(battle, d1) = ?
• TF(battle, d1) = 1

d1 d2 d3 d4

battle 1 0 7 13

good 114 80 62 89

fool 36 58 1 4

wit 20 15 2 3
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Example: 
Computing 

TF-IDF
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• TF-IDF(battle, d1) = ?
• TF(battle, d1) = 1
• IDF(battle) = N/DF(battle) = 

37/21 = 1.76

d1 d2 d3 d4

battle 1 0 7 13

good 114 80 62 89

fool 36 58 1 4

wit 20 15 2 3

word df
battle 21
good 37
fool 36
wit 34Overall document frequencies 

from our 37 plays

Natalie Parde - UIC CS 421

Example: 
Computing 

TF-IDF
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• TF-IDF(battle, d1) = ?
• TF(battle, d1) = 1
• IDF(battle) = N/DF(battle) = 37/21 

= 1.76

• TF-IDF(battle, d1) = 1 * 1.76 = 
1.76

d1 d2 d3 d4

battle 1 0 7 13

good 114 80 62 89

fool 36 58 1 4

wit 20 15 2 3
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Example: 
Computing 

TF-IDF
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• TF-IDF(battle, d1) = ?
• TF(battle, d1) = 1
• IDF(battle) = N/DF(battle) = 37/21 

= 1.76
• TF-IDF(battle, d1) = 1 * 1.76 = 

1.76
• Alternately, TF-IDF(battle, d1) = 
𝒍𝒐𝒈𝟏𝟎(𝟏 + 𝟏) ∗ 	 𝒍𝒐𝒈𝟏𝟎 𝟏. 𝟕𝟔 =
	0.074

d1 d2 d3 d4

battle 1 0 7 13

good 114 80 62 89

fool 36 58 1 4

wit 20 15 2 3
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Example: 
Computing 

TF-IDF
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• TF-IDF(battle, d1) = ?
• TF(battle, d1) = 1
• IDF(battle) = N/DF(battle) = 37/21 

= 1.76

• TF-IDF(battle, d1) = 1 * 1.76 = 
1.76

• Alternately, TF-IDF(battle, d1) = 
𝑙𝑜𝑔!3(1 + 1) ∗ 	 𝑙𝑜𝑔!3 1.76 =	0.074

d1 d2 d3 d4

battle 0.074 0 7 13

good 114 80 62 89

fool 36 58 1 4

wit 20 15 2 3
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Example: 
Computing 

TF-IDF
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To convert our 
entire term 
frequency matrix 
to a TF-IDF 
matrix, we need 
to repeat this 
calculation for 
each element.

d1 d2 d3 d4

battle 0.074 0.000 0.220 0.280

good 0.000 0.000 0.000 0.000

fool 0.019 0.021 0.004 0.008

wit 0.049 0.044 0.018 0.022
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How does the TF-IDF matrix compare 
to the original term frequency matrix?

d1 d2 d3 d4

battle 1 0 7 13

good 114 80 62 89

fool 36 58 1 4

wit 20 15 2 3

d1 d2 d3 d4

battle 0.074 0.000 0.220 0.280

good 0.000 0.000 0.000 0.000

fool 0.019 0.021 0.004 0.008

wit 0.049 0.044 0.018 0.022
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How does the TF-IDF matrix compare 
to the original term frequency matrix?

d1 d2 d3 d4

battle 1 0 7 13

good 114 80 62 89

fool 36 58 1 4

wit 20 15 2 3

d1 d2 d3 d4

battle 0.074 0.000 0.220 0.280

good 0.000 0.000 0.000 0.000

fool 0.019 0.021 0.004 0.008

wit 0.049 0.044 0.018 0.022

Occurs in every document …not important in the overall scheme of things!
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How does the TF-IDF matrix compare 
to the original term frequency matrix?

d1 d2 d3 d4

battle 1 0 7 13

good 114 80 62 89

fool 36 58 1 4

wit 20 15 2 3

d1 d2 d3 d4

battle 0.074 0.000 0.220 0.280

good 0.000 0.000 0.000 0.000

fool 0.019 0.021 0.004 0.008

wit 0.049 0.044 0.018 0.022

Increases the importance of rarer words like “battle”
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d1 d2 d3 d4 d5 d6 d7

battle 0.1 0.0 0.0 0.0 0.2 0.0 0.3

good 0.0 0.0 0.0 0.0 0.0 0.0 0.0

fool 0.0 0.0 0.0 0.0 0.0 0.0 0.0

wit 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Natalie Parde - UIC CS 421

Note that TF-IDF 
vectors are sparse.

• Many (usually most) 
cells have values of 0

• This can make learning 
difficult
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We’ll learn 
about other 

word 
representation 

techniques 
soon!

• However, TF-IDF remains a useful starting 
point for vector space models

• TF-IDF vectors are generally used with 
feature-based machine learning algorithms

• Logistic Regression
• Naïve Bayes
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Summary: 
Introduction 

to Vector 
Semantics

• Representation learning is the act of building or learning 
word vectors based on the distributional hypothesis

• This process seeks to encode the same linguistic phenomena 
observed in studies of lexical semantics

• Bag-of-words representations are one form of word vector, 
and TF-IDF representations are another

• TF-IDF representations combine simple term frequency with 
inverse document frequency to minimize the impact of 
words that occur more frequently in general
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