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Generative Classifiers

.

« Goal: Understand what each class I'm just thrilled that | have five
looks like final exams on the same day. @

« Should be able to “generate” an
instance from each class

 To classify an instance, determines Sarcasm Not Sarcasm
which class model better fits the
instance, and chooses that as the f?
label O
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More formally....

« Recall the definition of naive Bayes:
e ¢ = argmax P(d|c)P(c)

7
ﬁx }

Likelihood Prior
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More formally....

« Recall the definition of naive Bayes:
e ¢ = argmax P(d|c)P(c)

’
ﬁ/ ‘

Likelihood Prior

A generative model like naive Bayes makes use of the likelihood term
« Likelihood: Expresses how to generate an instance if it knows it is of class ¢
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Discriminative Classifiers

[«

* Goal: Learn to distinguish between I'm just thrilled that | have five
two classes final exams on the same day. @

 No need to learn that much
about them individually

 To classify an instance, determines
whether the distinguishing
feature(s) between classes is
present
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More formally....

« Recall the definition of naive Bayes:

_________ > ¢ = argmax
cec

A discriminative model instead tries to compute P(c|d) directly!
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* Logistic regression

Cross-entropy loss

function
Gradient descent
optimization
Thursday
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Tuesday ’

Advanced classification
details

Vector semantics
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* Discriminative supervised machine
learning algorithm

 Very close relationship with neural

Log iStiC networks!
Reg reSSion * How does it compare with naive Bayes®?

« Often performs a bit better
« May be more complex to implement
« May take longer to train
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Feature representation of the input

Logistic + Typically, a vector of features [x,0, x,2, ..., x,0]
for a given instance x0

regressmn + Classification function that computes the
follows a estimated class,
standard setup * Sigmoid
. « Softmax
that is reflected . Etc.
In most » Objective function or loss function that computes
discriminative error values on training instances
| - « Cross-entropy loss function
e?rnlng « Optimization function that seeks to minimize the
algorlth ms. loss function

« Stochastic gradient descent

Natalie Parde - UIC CS 421 10



Goal:

 Train a classifier that can decide whether a new
input observation belongs to class a or class b

To do this, the classifier learns a vector of weights
(one associated with each input feature) and a bias

Binary term

» Generalized (multinomial) case — vector of weights
associated with each class

Log IStI c  In true binary logistic regression we only need to learn

one set of weights to discriminate between classes

Reg ress i O n A given weight indicates how important its

corresponding feature is to the overall
classification decision

« Can be positive or negative

The bias term is a real number that is added to the
weighted inputs
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Binary
Logistic

Regression

 To make a classification decision, the classifier:

« Multiplies each feature for an input instance x by its
corresponding weight (learned from the training data)

« Sums the weighted features

« Adds the bias term b
* This results in a weighted sum of evidence for

the class:
* Z = b —+ Zi Wi

Xi

A 9

X TS
\ S~
\

\

\
i

~

Bias term

Weight for feature i

Feature j for instance x
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X Vector Notation

* Letting w be the weight vector and x be the input feature vector,
we can also represent the weighted sum z using vector
notation:

°Z=w-x+bv

HE N
I \ \
I \\ \\
H \ S,
Vector of all weights | 3, Bias term
\
—

Vector of all features for x
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How do we map
from a linear
weighted sum (z)
to a probability
ranging from 0-1?

« Pass z through the sigmoid function, a(2)

 Also called the logistic function, hence
the name logistic regression

Natalie Parde - UIC CS 421 14



Sigmoid Function

« Sigmoid Function:

1
’ O'(X) - 1+e™*

« Given its name because when plotted, it
looks like an s

0.8
0.6

0.4

« Results in a value y ranging from 0 to 1
1 1

cy=o0(2)= &

— 1+e %2  14e~Wxth

 This function has many useful properties:
» Squashes outliers towards 0 or 1
 Differentiable

0.2
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https://web.stanford.edu/~jurafsky/slp3/5.pdf

Probabilities
for all
classes

must sum to
1.0!

 |n true binary logistic regression, you

can just assume:
e P(y=1) = a(2)
* Py=0)=1-0()

* If you have separate feature weights

associated with different classes, you'll
need to compute separate
probabilities for each class

16
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How do we make a
classification decision?

* Choose a decision boundary
 For binary classification, often 0.5

» For a test instance x, assign a label c if P(y = c|x) is greater than the decision
boundary

Natalie Parde - UIC CS 421
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Example: Sigmoid Classification

.

J 'm just thrilled that | have five

final exams on the same day. @ G Sarcastic or not sarcastic?

Natalie Parde - UIC CS 421
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Example: Sigmoid Classification

.

J 'm just thrilled that | have five

final exams on the same day. @ G Sarcastic or not sarcastic?

Contains &
Contains @

Contains “I'm”



Example: Sigmoid Classification

.

J 'm just thrilled that | have five

final exams on the same day. @ G Sarcastic or not sarcastic?

Contains @ 2.5
Contains © -3.0

Contains “I'm” 0.5



Example: Sigmoid Classification

.

'm just thrilled that | have five | |
final exams on the same day. @ e m———————— Sarcastic or not sarcastic?

Contains & 25 A=mmmmmmem——a- < Positively associated with sarcasm
I
Contains & 3.0 Emmmm—m—m———e ", N | 4 with
—————T egatively associated with sarcasm
Contains “I'm” 0.5 ®===77 < y



Example: Sigmoid Classification

.

J 'm just thrilled that | have five

final exams on the same day. @ G Sarcastic or not sarcastic?

Feature | Weight __| Value

Contains @ 2.5 1
Contains © -3.0 0

Contains “I'm” 0.5 1



Example: Sigmoid Classification

.

J 'm just thrilled that | have five

final exams on the same day. @ G Sarcastic or not sarcastic?

Feature | Weight | Value SR

Contains @ 2.5 1
Contains © -3.0 0

Contains “I'm” 0.5 1



Example: Sigmoid Classification

.

J 'm just thrilled that | have five

final exams on the same day. @ G Sarcastic or not sarcastic?

Feature | Weight | Value SR

Contains & 2.5 1

Z=0>b+ Z W; X
Contains & -3.0 0 :
Contains “I'm” 0.5 1 y = 0(z) =—

1+e~ %



Example: Sigmoid Classification

.

'm just thrilled that | have five | |
final exams on the same day. @ e m———————— Sarcastic or not sarcastic?

Feature | Weight | Value SR

Contains < 2.5 1

Z=b+ z Wi X
Contains & -3.0 0 :
Contains “I'm” 0.5 1 y = o(z) = 1+2_Z

P(sarcasm|x) = ¢(0.1+ (25%1+4(=3.0)*0+ 0.5x1)) = ¢(0.1+3.0) = ¢(3.1) =

— =096



Example: Sigmoid Classification

.

'm just thrilled that | have five | |
final exams on the same day. @ e m———————— Sarcastic or not sarcastic?

Feature | Weight | Value SR

Contains < 2.5 1

Z=b+ z Wi X
Contains & -3.0 0 :
Contains “I'm” 0.5 1 y = o(z) = 1+2_Z

1
P(sarcasm|x) = ¢(0.1+ (25%1+4(=3.0)*0+ 0.5x1)) = ¢(0.1+3.0) = ¢(3.1) = i o1 0.96 *



2 Any useful (or not useful) property of
:: the language sample can be a feature!

 For example....
« Specific words or n-grams
* Information from external lexicons
« Grammatical elements
 Part-of-speech tags



Learning in Logistic Regression

* How are the parameters of a logistic regression model, w and
b, learned?

* Loss function
* Optimization function

» Goal: Learn parameters that make y for each training
observation as close as possible to the true y

Natalie Parde - UIC CS 421



Logistic regression

Cross-entropy loss
function

Gradient descent

optimization
Thursday
e e
Tuesday 5

Advanced classification
details

Vector semantics
TF-IDF
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Loss Function

* We need to determine the distance between the predicted and true output
value

 How much does y differ from y?

* We do this using a conditional maximum likelihood estimation

« Select w and b such that they maximize the log probability of the true y
values in the training data, given their observations x

* This results in a negative log likelihood loss
* More commonly referred to as cross-entropy loss

Natalie Parde - UIC CS 421 30



Cross-Entropy Loss

» Measures the distance between the probability distributions of predicted and
actual values

« loss(y, 7)) = — X, pi. log prs
» Cis the set of all possible classes

* p; . is the actual probability that instance / should be labeled with
class ¢

* p; . is the predicted probability that instance i/ should be labeled with
class ¢

» Observations with a big distance between the predicted and actual values
have much higher cross-entropy loss than observations with only a small
distance between the two values

Natalie Parde - UIC CS 421



Example: Cross-Entropy Loss

.

)

'm just thrilled that | have five
final exams on the same day. &

Natalie Parde - UIC CS 421
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Example: Cross-Entropy Loss

.

J 'm just thrilled that | have five

final exams on the same day. @ Not Sarcastic

Predicted Predicted Actual Actual

Probability: Probability: Not Probability: Probability: Not
Sarcastic Sarcastic Sarcastic Sarcastic

I’'m just thrilled that
| have five final

exams on the
same day. &



Example: Cross-Entropy Loss

.

J 'm just thrilled that | have five

final exams on the same day. @ Not Sarcastic

Predicted Predicted Actual Actual

Probability: Probability: Not Probability: Probability: Not
Sarcastic Sarcastic Sarcastic Sarcastic

I’'m just thrilled that
| have five final

exams on the
same day. &

0.96 0.04 1 0



Example: Cross-Entropy Loss

.

J 'm just thrilled that | have five

Not Sarcastic

final exams on the same day. @

Predicted Predicted Actual Actual

Probability: Probability: Not Probability: Probability: Not
Sarcastic Sarcastic Sarcastic Sarcastic

I’'m just thrilled that
| have five final 0.96 0.04 1 0

exams on the
same day. &

IC|
loss( . .’) e . 10 . — —1). , 10 . . — M. . lo . - ,
yl’ yl pl,C g pl,C pl,SaT'CClSth g pl,SaT'CClSth pl,'not sarcastic g pl,not sarcastic

c=1



Example: Cross-Entropy Loss

.

'm just thrilled that | have five _
Not Sarcastic

final exams on the same day. @

Predicted Predicted Actual Actual

Probability: Probability: Not Probability: Probability: Not
Sarcastic Sarcastic Sarcastic Sarcastic

I’'m just thrilled that

| have five final
S G e 0.96 0.04 1 0
same day. &

|C|
loss( ; .’) = — . 10 7. —= —1). . lo . T . — M. ; lo } - ]
yl’ yl pl,C g pl,C pl,SaTCCLSth g pl,SarcaSth pl,not sarcastic g pl,not sarcastic

c=1

loss(y;,y;")) = —1%10g0.96 — 0 = log 0.04



Example: Cross-Entropy Loss

.

'm just thrilled that | have five _
Not Sarcastic

final exams on the same day. @

Predicted Predicted Actual Actual

Probability: Probability: Not Probability: Probability: Not
Sarcastic Sarcastic Sarcastic Sarcastic

I’'m just thrilled that

| have five final
S G e 0.96 0.04 1 0
same day. &

|C|
loss( ; .’) = — . 10 7. —= —1). . lo . T . — M. ; lo } - ]
yl’ yl pl,C g pl,C pl,SaTCCLSth g pl,SarcaSth pl,not sarcastic g pl,not sarcastic

c=1

loss(y;,vi') = —1 x10g 0.96 — 0 * log 0.04 = —10g 0.96 = 0.02



Example: Cross-Entropy Loss

.

'm just thrilled that | have five _
Not Sarcastic

final exams on the same day. @

Predicted Predicted Actual Actual

Probability: Probability: Not Probability: Probability: Not

Sarcastic

Sarcastic Sarcastic Sarcastic

I’'m just thrilled that

| have five final 1 0
exams on the

same day. &

What if our predicted values were switched?



Example: Cross-Entropy Loss

.

'm just thrilled that | have five _
Not Sarcastic

final exams on the same day. @

Predicted Predicted Actual Actual

Probability: Probability: Not Probability: Probability: Not
Sarcastic Sarcastic Sarcastic Sarcastic

I’'m just thrilled that

| have five final
S G e 0.04 0.96 1 0
same day. &

|C|
loss( ; .’) = — . 10 7. —= —1). . lo . T . — M. ; lo } - ]
yl’ yl pl,C g pl,C pl,SaTCCLSth g pl,SarcaSth pl,not sarcastic g pl,not sarcastic

c=1

loss(y;,y;')) = —1 +10g0.04 — 0 *x10g 0.96 = —1og 0.04 = 1.40\

Greater loss value!




Logistic regression

Cross-entropy loss
function

Gradient descent
optimization

Thursday

Tuesday 5

Advanced classification
details

Vector semantics
TF-IDF
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Finding Optimal Weights

 Goal: Minimize the loss function defined for the model
- f= argglin%Z?ichg(y(”,x(z 0)

 For logistic regression, 8 = w, b
* One way to do this is by using gradient descent

Natalie Parde - UIC CS 421
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Gradient Descent

* Finds the minimum of a function by
moving in the opposite direction of lShOU|d move

the function’s slope

 For logistic regression, loss functions
are convex
* Only one minimum

» Gradient descent starting at any point is
guaranteed to find it

right or left?

loss

weight

Natalie Parde - UIC CS 421 42



Gradient Descent

* Finds the minimum of a function by
moving in the opposite direction of
the function’s slope

 For logistic regression, loss functions
are convex
* Only one minimum

» Gradient descent starting at any point is
guaranteed to find it

Should | move
right or left?

loss

Negative slope

weight
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Gradient Descent

* Finds the minimum of a function by
moving in the opposite direction of
the function’s slope

 For logistic regression, loss functions
are convex
* Only one minimum

» Gradient descent starting at any point is
guaranteed to find it

Should | move
right or left?

loss

weight
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Gradient Descent

* Finds the minimum of a function by
moving in the opposite direction of
the function’s slope

 For logistic regression, loss functions
are convex
* Only one minimum

» Gradient descent starting at any point is
guaranteed to find it

loss

weight
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Gradient Descent

* How much do we move?

° alu e Slope _ Derivative of loss function curve
d -~ with respect to a given weight
* o few)
aw loss

» Weighted by a learning rate n

 Faster learning rate — move w more
on each step

* S0, the change to a weight is

actually:

o vot+l — ot 4 oo
Wi = w2 £ (W)

Natalie Parde - UIC CS 421
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Remember, there are weights for each
feature.

* The gradient is then a vector of the slopes of each dimension:
B !
2w LU (x6),5)

S L(f(x:0),)

* This in turn means that the final equation for updating 6 is:
* 0r11 =0 —nVL(f(x;0),y)

° VQL(f(X; H)Jy) —




The Gradient for Logistic
Regression

« Recall our cross-entropy loss function:
+ loss(y, ) = —Xor, ylogy = — Xi- ylogo(w - x + b)
* The derivative for this function is:

o dLcEWb) _ l[oc(w-x+ D) —ylx;

Difference between true and estimated y Corresponding input observation

Natalie Parde - UIC CS 421
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Stochastic Gradient Descent
Algorithm

0<0 # initialize weights to ©
repeat until convergence:
For each training instance (x®,y®) in random order:
# What is our gradient, given our current parameters?

g « VoL(f(x®;06),y®)

60 « 0 —ng # What are our updated parameters?
return 6



Example: Gradient Descent (First Step)

.

'm just thrilled that | have five |
final exams on the same day. @ | <77777777" Sarcastic

Feature | Weight | Value

Contains 0 1
Contains & 0 0

Contains “I'm” O 1



Example: Gradient Descent (First Step)

[Tm just thrilled that | have five |
final exams on the same day. @ | <77777777" Sarcastic

Mm Bias (b) = 0

Contains Learning rate (n) = 0.1

Contains © . .
| 0 0 9t+1 _ Ht . UVQL(f(X(l); 0),y(l))
Contains “I'm” O 1



Example: Gradient Descent (First Step)

[Tm just thrilled that | have five |
final exams on the same day. @ | <77777777" Sarcastic
mm Bias (b) = 0

Contains Learning rate (n) = 0.1

Conta!ns © 0 0 gt+1 — gt _ UVQL(f(x(i); 9),y(‘))
Contains “I'm” 0 1
Eecall dLCdE—(Wb) [c(w-x+b) —ylx X; Recall: 0(z) = 1_2
'dLCE(W, b)' wj 1+e
dw,
dLcg(w, b) (cw-x+b) —y)x; (0(0) — Dx, (0.5 -1)xy —0.5x1 —0.5
; oY dw _|lew-x+b)—y)xy| |(@(0)—Dx,| [(05—D)x,| |[-05=*0] _
VgL(f(x( ) 9);)/( )) = dLCE(VT’: b~ lEO—EW cx 4+ b§ — i;xi - lgO_gO% — 1%3&‘ N IEO.S — I;xi B l—gg * (1)‘ B l—g.Sl
dw, ow-x+b)—y g(0)—1 (0.5-1) —0.5 —0.5
dLcg(w, b)
db

Natalie Parde - UIC CS 421
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Example: Gradient Descent (First Step)

[Tm just thrilled that | have five |
final exams on the same day. @ | <77777777" Sarcastic

Mm Bias (b) = 0

Contains Learning rate (n) = 0.1

Contains © . .
| 0 0 9t+1 _ Ht . UVQL(f(X(l); 0),y(l))
Contains “I'm” O 1

—-0.5
oL (F(x9;6),7) - l_o 4

-0.5
—0 5 —0 5 —0.05 0.05
—0 5 —0 5 —0.05 0.05
—0.5 —0.5 —0.05 0.05

g1+t = 0t — UpL(F(x0;6),y) = I

oS OO O
o OO O
o OO O



Example: Gradient Descent (First Step)

[Tm just thrilled that | have five |
final exams on the same day. @ | <77777777" Sarcastic

Mm Bias (b) = 0

Contains Learning rate (n) = 0.1

Contains © . .
| 0 0 9t+1 _ Ht . UVQL(f(X(l); 0),y(l))
Contains “I'm” O 1

—0.5
natresn)=[ 1]
—0.5

—0. 05 0 05
] l—O 05 0. 05]
—0.05 0.05

0 —0.5
01 = 9* — ¥, L(f(x®;6),y¥) = H l‘” 5] l
0 —0.5

—05
—05

o OO O
oS OO O



Example: Gradient Descent (Second Step)

[Tm just thrilled that | have five |
final exams on the same day. @ | <77777777" Sarcastic

mw Bias (b) = 0.05

Contains @ 0.05 Learning rate (n) = 0.1
Contains & 0 0 : .
_ 0+t = 0t —nVeL(f(x@;0),y®)
Contains “I'm”  0.05 1
dL b
Recall: 2 = [(w-x + b) — ylx; | | Recall: 6(2) = —
‘dLep (W, b)" aw; 1+e
dw;
dLcg(w, b) EGEW > G A Z% = y%xl EJEO.OE *1+ 00+ 0.0; * 1+ Og = 1§x1 EaEO.lgg = 1;x1 Eggj — Bxl —0.46 %1 —0.46
0. o dw _|(ew-x+Db)—y)xy| |(@(0.05¥1+0x0+0.05%1+.05) —1)xz| [(0(0.15) —1)x| [(0.54—1)x,| |-046%0| _| 0
VoL(f(x®;0),y®) = dLCE(vfz, )| [(ew-x+b) - y)xz ~ [ (0(0.05 %1+ 00+ 0.05 * 1 +.05) — 1)x§ ~ [(a(0.15) - 1)x§ - l(0.54 —~ 1);4 - [—0.46 * 1] - l—0.46‘
dws ocw-x+b)—y 0(0.05%x1+0%0+0.05%1+.05)—1 0(0.15) — 1 (0.54 — 1) —0.46 —0.46
dLcg(w, b)

db
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Example: Gradient Descent (Second Step)

[Tm just thrilled that | have five |
final exams on the same day. @ | <77777777" Sarcastic

Mm Bias (b) = 0.05

Contains 0.05 Learning rate (n) = 0.1
Contains & 0 0

61 = 9t —nVuL(f(x@;0),y®)
Contains “I'm”  0.05 1

—0.46
VoL(f(x;0),y®) = l_0046]
—0.46

0.05 —0467 [0.05 0467 [0.057 [—0.0467 10.096

t+1 _ ot _ . ()
0t = 0" —nVeL(f(x®;0),y") = [0 05‘ [—0 44 [0 05‘ Ll [—0 44 0. 05‘ [—o 046\ lo 096‘
0.05 —046! lo.os —046! loos! Ll—o0.046! Ll0.096



Mini-Batch Training

« Stochastic gradient descent chooses a single random example at a time ...this can result in
choppy movements!

. _Oftten, the gradient will be computed over batches of training instances rather than a single
instance
« Batch training: Gradient is computed over the entire dataset
» Perfect direction, but very computationally expensive

« Mini-batch training: Cross-entropy loss and gradient are computed over a group of m
examples
* Lcg(training samples) = — Y™, L (3@, y@)
SCC R > [o(w - x® +b) — y(i)]xj(i)

de m

Natalie Parde - UIC CS 421 57



» To avoid overfitting, regularization terms (R(8)) can also be added to the loss
function to penalize large weights (which can hinder a model’s ability to generalize)
« Two common regularization terms:
* L2 regularization
» Quadratic function of the weight values
» Square of the L2 norm (Euclidean distance of 8 from the origin)
. . * R(®) = |l6]1z = X7, 67
Reg u Iarlzatlon « Easier to optimize
» Good for weight vectors with many small weights
* L1 regularization
» Linear function of the weight values
« Sum of the absolute values of the weights (Manhattan distance from

the origin)
* R(®) =16ll, = Xi-116;] '

» Good for sparse weight vectors with some larger weights

Natalie Parde - UIC CS 421 T 58




Interpreting
Models

« What if we want to know more than just the correct classification?
« Why did the classifier make the decision it made?

 In these cases, we can say we want our model to be interpretable

« We can interpret logistic regression models by determining how much weight is
associated with a given feature

Natalie Parde - UIC CS 421 59



How do we evaluate
logistic regression
classifiers?

¢ Same way as naive Bayes
(and all other) text
classifiers!

* Precision
* Recall
 F1

« Accuracy

Natalie Parde - UIC CS 421




Summary: Logistic Regression

* Logistic regression is a discriminative classification model used for supervised machine learning

» Itis characterized by four key components:
* Feature representation
» Classification function
* Loss function
* Optimization function

» Classification decisions are made using a sigmoid function

» Loss is typically computed using a cross-entropy function

« Weights are usually optimized using stochastic gradient descent

* Avregularization term may be added to the loss function to avoid overfitting

+ In addition to serving as a simple classifier and a useful foundation for neural networks, logistic regression can function as a
powerful analytic tool



Logistic regression

Cross-entropy loss
function

Gradient descent
optimization

e

Tuesday

Natalie Parde - UIC CS 421

¢

Thursday

Advanced classification
details

Vector semantics
TF-IDF
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Training,
Validation,

and Test
Sets

Natalie Parde - UIC CS 421

» Text corpora should generally be divided into
three separate subsets (sometimes called
splits or folds):

* Training: Used to train the classification
model

» Validation: Used to check performance
while developing the classification model

» Test: Used to check performance only
after model development is finished

» The percentage of data in each fold can vary

* In many cases, researchers like to
reserve 75% or more of their corpus for
training, and split the remaining data
between validation and test

63



Why Is a
validation

set
necessary?

* It helps avoid overfitting
« Overfitting: Artificially boosting
performance on the test set by
tweaking parameters such that
they are particularly well-suited for
the test data

« Why is overfitting bad?
 Models that have been overfit tend

to perform poorly on unseen
samples in the same domain

* This means that they cannot
generalize easily to real-world
scenarios, where the entire test
set is not known in advance

64

Natalie Parde - UIC CS 421




What if the entire dataset
Is pretty small?

* In cases where the entire dataset is small, it may be
undesirable to reserve an entire fold of data for validation

Smaller training set (less data from which to learn)
Smaller test set (less data on which to evaluate)

* |n these cases, a reasonable alternative is cross-validation

Randomly split the dataset into k folds
Train on k-1 folds and test on the other fold

Repeat with a different combination of k-1 folds and
other fold

Overall, repeat k times
Average the performance across all k training/test runs

Natalie Parde - UIC CS 421
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* Most commonly, k=10 in cross-validation
» Referred to as 10-fold cross-
validation
* One problem with cross-validation?
« To avoid overfitting, we can’t look at

C ross - any of the data because it's technically
all test data!
V I - d t. n » To avoid this issue, we can:
a I a I O » Create a fixed training set and test set

 Perform k-fold cross-validation on the

training set (where it’'s fine to look at
the data) while developing the model

e Evaluate the model on the test set as
usual, training on the entire training set
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What about more advanced settings?

Logistic regression can be used for binary
classification, multilabel classification, or
multinomial classification.

e ClassAvs. Class B

 Class Avs. Class B vs. Class C vs. Class
D....



Multinomial Logistic
Regression

e Other names:
« Softmax regression
« Maxent classification (short for maximum entropy classification)

« Uses a softmax function rather than a sigmoid function

« Softmax takes a vector z of arbitrary values (same as the sigmoid function) and
maps them to a probabillity distribution summing to 1

eZi
° )= —
softmax(z;) ST .7
j=1

Natalie Parde - UIC CS 421
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e If we don’t want to build a true multinomial
model, we can also build multiple one vs. all
classifiers

* How do we do this?

One VS. A"  Build separate binary classifiers for

each class

ClaSSification  Run each classifier on the test

document

 Choose the label from the classifier
with the highest score

I@ vs. | ©& | vs. @\/
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« Each document can be assigned more than
one label

* How do we do this?

 Build separate binary classifiers for each
class

Multi-Label . Positive class vs. every other class
C|aSSification * Run each classifier on the test document

« Each classifier makes its decision
independently of the other classifiers,
therefore allowing multiple labels to
be assigned to the document

Natalie Parde - UIC CS 421 70




Multi-Class Contingency Matrix

Actual
class 1 class 2 class 3
-
N a b C
©
(@)
©
_|G_g (Q\|
ol 2
O
9 (_3 d e f
o
o
(7))
n
i g h |
(@)
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Multi-Class Precision

N

Actual
class 1 class 2 class 3
(f
2 : b °
©
°
\
©
_9 (Q\|
ol 2
8 c_g d e f
o}
(a9
% g h |
o
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a+b+c
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Multi-Class Recall

Actual
class 1 - class 2 class 3

2 a b C Precision =

© a+b+c

o

R || =

E ~ eca at+d+g
S ? d f
o) 2 e
O by
Dt &)

(a9

c_% g h |

AN Y
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Macroaveraging

and
Microaveraging

« We can check the system’s overall

performance in multi-class
classification settings by combining all
of the precision values (or all of the
recall values) in two ways:

 Macroaveraging
* Microaveraging

Macroaveraging: Compute the
performance for each class, and then
average over all classes

Microaveraging: Collect decisions for
all classes into a single contingency
table, and compute precision and recall
from that table

74
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Predicted

Macroaveraging

class 1

class 2

class 3

class 1

Actual

class 2

TP: a FP: b+c

FN: d+g

class 3

TP: e FP: d+f
class 2

FN: b+h

c/
s
S

TP:i  FP:g+h

FN: c+f
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Macroaveraging

(jrecisionuasw = —tﬂtffp ‘ Ve e

——

FN: d+g
Actual A
e
class 2 class 3 c,\(b
L tp
. —

_ class 2

5 —l-

(&)

E e

a

FN: b+h

TP:i  FP:g+h

.. t
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Macroaveraging [Preciionces: = b | e Fei

tp+fp

—)

FN: d+g

Actual

class 2

—

. t
Precisiongjasss = ﬁ J

TP: e FP: d+f

class 2

e}
_.Cl_)'
kS
8 ° ' FN: b+h
o
h i
/ TP: | FP: g+h
Macroaveraged Precision . tp
_ Precisiongygss1+Precisioncigssa+Precisioncigsss Precisiongjasss = m FN: c+f
3
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TP: a FP: b+c

Microaveraging

FN: d+g

class 1

class 2 class 3
2 > © TP:e  FP:d+f TP:
ate+i
class 2
3] « el
é E e f d+FJ[:lb:+h
a| ° FN: b+h g
+c+f
Q
S
h i d:S‘
o
TP: i FP: g+h
FN: c+f
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Microaveraging

TP: a FP: b+c

FN: d+g
class 1 class 2 class 3
i ° ° TP:e  FP:d+f TP
ateti
class 2
l o d e f ' FN:
s{ ® FN: b+h o
Q
6%
g h i
0%
.t Ltori TP:i  FP:g+h
Precision = = ,
tp+fp ate+itb+ctd+f+g+h
t o +e+i :
Recall = P — _ areri FN: c+f
tp+fn  ate+i+d+g+b+h+c+f
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FP:
b+c+d+f
+g+h
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What’s better:

Microaveraging or
macroaveraging?

» Depends on the scenario!
« Microaverages tend to be dominated by

more frequent classes, since the counts
are all pooled together

« Macroaverages are evenly distributed

across classes

» Thus, if performance on all classes is

equally important, macroaveraging is
probably better; if performance on the
most frequent class is more important,
microaveraging is probably better

80
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Statistical
Significance
Testing

 We've trained and evaluated our classification model
...how do we know it's better (or worse) than other
alternate models?

 We can'’t necessarily say that Model A is better than
Model B purely because its
precision/recall/F ;/accuracy is higher!

* Model A might be performing better than Model B
just due to chance

* To confirm our suspicions that Model A really is better,
we need to perform
to reject the that Model A is better
than Model B just due to chance

Natalie Parde - UIC CS 421 81



Null Hypothesis

» Given observation: Model A performs
X% better than Model B

* Null Hypothesis: This is due to
chance, rather than some meaningful
reason

 If we had many test sets of the
same size as ours, and measured
Model A's and Model B's
performance on all of them, then
on average Model A might
accidentally perform x% better than
Model B

Natalie Parde - UIC CS 421
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P-Value

If we reject the null
hypothesis, that means
that we have identified

a statistically

If the p-value is
sufficiently low
(generally 0.05 or 0.01),

The probability that we'll
see equally big

performance differences
by chance is referred to
as the p-value

significant difference
between the

performance of Model A
and Model B

then we can reject the
null hypothesis
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1 How do we determine our p-
value?

« We can select from among many possible methods based on several factors
* Distribution of our data
 Number of samples in our dataset

« Most NLP tasks do not involve data from a known distribution

« Because of this, it's common to use non-parametric tests to determine
statistical significance:

» Bootstrap test



P A9 S

Bootstrap Test

* Repeatedly draws many small samples from the test set, with replacement
« Assumes each sample is representative of the overall population
» For each sample, checks to see how well Model A and Model B perform on it

» Keeps a running total of the number of samples for which the difference
between Model A's and Model B’s performance is more than twice as much as
the difference between Model A's and Model B’s performance in the overall
test set

» Divides the final total by the total number of samples checked to determine the
p-value

Natalie Parde - UIC CS 421 85




Formal Algorithm: Bootstrap Test

Calculate 6 (x) # Performance difference between Models A and B

for i = 1 to b do: # Db
for j = 1 to n do:

= number of samples

# n = size of bootstrap sample

Randomly select a test instance and add it to the

bootstrap sample

Calculate 6§ (x"(1))

for each x"(4):
s = s+1 1f & (x*(1))

p(x) = s/b

# Performance difference between Models A

# and B for the bootstrap sample x*&)

> 26 (x)

Natalie Parde - UIC CS 421
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Interested in learning more about statistical
significance testing in NLP?

» Paper: https://aclanthology.org/P18-1128.pdf

 Book:
https://www.morganclaypool.com/doi/10.2200/S009

94ED1V01Y202002HLT045

Natalie Parde - UIC CS 421
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Logistic regression
Cross-entropy loss

function
Gradient descent
optimization
Thursday
I S
Tuesday 5

Advanced classification
details

'* Vector semantics

TF-IDF
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Vector Semantics

» Facilitates a form of representation
learning based on the notion that similar
words tend to occur in similar environments

 This notion is known as the distributional
hypothesis, which was first formulated
by linguists in the 1950s

« Joos (1950)
» Harris (1954)
* Firth (1957)

» Self-supervised

Natalie Parde - UIC CS 421

DISTRIBUTIONAL STRUCTURE
ZeLLig S. HARRIS

1. Does language have a distributional structure? For the purposes of the
present discussion, the term structure will be used in the following non-rigorous
sense: A set of phonemes or a set of data is structured in respect to some feature,
to the extent that we can form in terms of that feature some organized system of
statements which describes the members of the set and their interrelations (at
least up to some limit of complexity). In this sense, language can be structured
in respect to various independent features. And whether it is structured (to more
than a trivial extent) in respect to, say, regular historical change, social inter-
course, meaning, or distribution—or to what extent it is structured in any of
these respects—is a matter decidable by investigation. Here we will discuss how
each language can be described in terms of a distributional structure, i.e. in
terms of the occurrence of parts (ultimately sounds) relative to other parts, and
how this description is complete without intrusion of other features such as his-
tory or meaning. It goes without saying that other studies of language—his-
torical, psychological, etc.—are also possible, both in relation to distributional
structure and independently of it.

The distribution of an element will be understood as the sum of all its environ-
ments. An environment of an element A is an existing array of its co-occurrents,
i.e. the other elements, each in a particular position, with which A occurs to
yield an utterance. A’s co-occurrents in a particular position are called its selec-
tion for that position.

1.1. Possibilities of structure for the distributional facts.

To see that there can be a distributional structure we note the following: First,
the parts of a language do not occur arbitrarily relative to each other: each
element occurs in certain positions relative to certain other elements. The peren-
nial man in the street believes that when he speaks he freely puts together what-
ever elements have the meanings he intends; but he does so only by choosing
members of those classes that regularly occur together, and in the order in which
these classes occur.

Second, the restricted distribution of classes persists for all their occurrences;
the restrictions are not disregarded arbitrarily, e.g. for semantic needs. Some
logicians, for example, have considered that an exact distributional description
of natural languages is impossible because of their inherent vagueness. This
is not quite the case. All elements in a language can be grouped into classes whose
relative occurrence can be stated exactly. However, for the occurrence of a
particular member of one class relative to a particular member of another class
it would be necessary to speak in terms of probability, based on the frequency of
that occurrence in a sample.

Third, it is possible to state the occurrence of any element relative to any other
element, to the degree of exactness indicated above, so that distribucional state-
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Vector Semantics

B

4 For my assignment I’'m writing a scathing critique of Dr. Parde’s recent paper.

For my assignment I'm writing a scathing review of Dr. Parde’s recent paper}
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Vector Semantics

For my assTgnment I’'m writing a@iritiqu@me’s recent paper)g- — — _ _
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Vector Semantics

For my aSS|gnment I’'m writing a scathlng of Dr. Parde’s rece@ —-— -
=~ ~
\ \

-
\ ——_—

»@s&gnment I'm writing a scathin -OMO» Dr. Parde’s recent paper.
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There are many

VEVERCANELC
use of the

distributional
hypothesis!

 Classical word vectors

» Bag of words representations and
their variations
 Implicitly learned word vectors
* Word2Vec
» GloVe

 All of these approaches seek to
encode the same linguistic

phenomena observed in studies of
lexical semantics



Lemmas

and
Senses

Lemma: The base form of a word
* Papers — paper
e Mice — mouse

Word Sense: Different aspects of meaning for a word
* Mouse (1): A small rodent
* Mouse (2): A device to control a computer cursor

Words with the same lemma should (hopefully!) reside near one
another in vector space

Words with the same sense might also reside near one another in
vector space, depending on the representation learning technique

lllll
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 When a word sense for one word is
(nearly) identical to the word sense for
another word

« Synonymy: Two words are synonymous if
they are substitutable for one another in
any sentence without changing the
situations in which the sentence would be
true

* This means that the words have the
same propositional meaning

Synonymy

f— e

For my assignment I’'m writing a scathing critique of Dr.
Parde’s recent paper.

For my assignment I'm writing a scathing review of Dr.
Parde’s recent paper.

—



Word Similarity and Relatedness

« Word similarity: Words are not synonyms, but they can
r’ be used in the same contexts as one another

* Word Relatedness: Words are associated with one

another based on their shared participation in an event \b s s

—

esSpresso

Natalie Parde - UIC CS 421
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« Semantic Frame: A set of words that denote
perspectives or participants in a particular
type of event

« Commercial Transaction = {buyer, seller,

Semantic goods, money}

Frames - Semantic Role: A participant’s underlying
role with respect to the main verb in the
sentence

Natalie bought five cookies for $5 from Devika.

buyer ‘ éoods | | money seller




Connotation

* Also referred to as affective
meaning

« The aspects of a word’s meaning
that are related emotions, sentiment,
opinions, or evaluations

« Valence: Positivity
« High: Happy, satisfied
« Low: Unhappy, annoyed
« Arousal: Intensity of emotion
« High: Excited, frenzied
* Low: Relaxed, calm
« Dominance: Degree of control

« High: Important,
controlling

 Low: Awed, influenced

Word vector! (Osgood et al., 1957)

Natalie Parde - UIC CS 421

Valence Arousal Dominance
courageous 8.05 5.5 7.38
[ music 7.67 5.57 6.5
heartbreak 2.45 5.65 3.58
6.71 3.95 4.24
6.68 5.59 5.89
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How, then,
should we
represent
the meaning
of a word?

* Many, many approaches!
« Two classic strategies:

- Bag of words representations: A word

IS a string of letters, or an index in a
vocabulary list

* Logical representation: A word defines

its own meaning (“dog” = DOG)

Natalie Parde - UIC CS 421
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How, then,
should we
represent
the meaning
of a word?

* Many, many approaches!
« Two classic strategies:

- Bag of words representations: A word

IS a string of letters, or an index in a
vocabulary list

* Lfpgigahkrepyesentatio wagrd dg\aes
iJs\ewn ningY doy/= )

Natalie Parde - UIC CS 421
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Bag of words
features
implement a

simple form
of vector
semantics.

 Two words with very similar sets of
contexts (i.e., similar distributions of
neighboring words) are assumed to
have very similar meanings

* We represent this context using vectors

* For bag of words:

» Define a word as a single vector point in an
n-dimensional space, where n = vocabulary
size

» The value stored in a dimension n '
corresponds to the presence of a context
word c¢ in the same sample as the target

word w /
> 4
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The goal is for
the values in
these vector
representations
to correspond

with dimensions
of meaning.

* Assuming this is the case,

that are semantically
intuitive

Natalie Parde - UIC CS 421

review

| valentine's
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The goal is for
the values in
these vector
representations
to correspond

with dimensions
of meaning.

» Assuming this is the case,

we should be able to:
e Cluster vectors into
semaREeaqroln

sTform oerations
that are semantically
intuitive

Natalie Parde - UIC CS 421

Eummarﬂ

_|_

analysis

critique
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Logistic regression
Cross-entropy loss

function
Gradient descent
optimization
Thursday
I S
Tuesday 5

Advanced classification
details

Vector semantics

* TF-IDF
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Another
approach
for learning
context

using “bag
of words”
style
vectors?

+ TF-IDF:

« Term Frequency * Inverse Document
Frequency

« Meaning of a word is defined by the counts

of words in the same document, as well as
overall

Natalie Parde - UIC CS 421 C



TF-IDF originated as a tool for -

information retrieval.

]
—
As You Twelfth
« Rows: Words in a vocabulary Like It Night

* Columns: Documents in a corpus




TF-IDF originated as a tool for
information retrieval.
As You Twelfth

* Rows: Words in a vocabulary Like It

e Columns: Documents in a
selection

As You Twelfth Julius Henry V
Like It  Night Caesar

battle L 1]
good [
. Julius
wit Caesar

——— R —
| “wit” appears 3 times in Henry V ;
.




In a term-document matrix, rows can be

viewed as word vectors.

« Each dimension

corresponds to a

document As You Twelfth Julius  Henry
_ o Like It Night Caesar V
 Words with similar

vectors occur in similar
documents

* This would be one way to
define term frequency
vectors




In a term-document matrix, rows can be

viewed as word vectors.

good [62, 89] e ————————— ~C

As You Twelfth Julius
Like It Night Caesar

\

1

|

|

|

> 1
> l
sl | s _so g
T battle [7, 13] { r
i 1!

} S 2 s e e "I=

fool 1, 4] 1 i 1!
&Wit 2, 3] o e e \-"-g-_-_-_-_—_':-_f.z—_':"),

Julius Caesar
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 WWe can also use word context for vector
representations

« Context can be defined however you'd like (e.g.,
context = entire document, or context = predetermined

D iffe re nt span length surrounding target word)
Types of

* In this type of word-word matrix, the columns
are also labeled by words

Context e Thus, dimensionality is |V| x |V]

» Each cell records the number of times the
row (target) word and the column (context)
word co-occur in some context in a training
corpus




Example Context Window (Size = 4)

» Take each occurrence of a word (e.g., strawberry)
« Count the context words in the four-word spans before and after it

to get a word-word co-occurrence matrix
traditi nalhit

is tradifjonally  foll

a

often mixed, such as strawberry rhubarb pie. Apple pie
T perip ana personal._ aignal —assISants. These . devices . usually o

a computer. This includes information available on the internet



Sometimes,
raw co-
occurrence
frequency
vectors

don’t give
us the most
useful
information.

« Some words co-occur frequently with
many words, so won't be very
informative

e the, it, they
 \We want to know about words that co-

occur frequently with one another, but

less frequently across all texts

Natalie Parde - UIC CS 421 C
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TF IDF -  Term Frequency: The frequency of the
- IS word t in the document d

here to save * tfy,q = count(t, d)

 Document Frequency: The number of
the daY' documents in which the word t occurs

Natalie Parde - UIC CS 421



Computing TF-IDF

* Inverse Document Frequency: The inverse of document frequency, where N is the total
number of documents in the collection

Af =
e idf; = ar
 IDF is higher when the term occurs in fewer documents
 Document = Whatever is considered an instance or context in your dataset

* |t is often useful to perform these computations in log space
* TF:log,o(tfrq+1) — Make sure to smooth so you don't try to take the log of 0!
* IDF: logq( idf;

Natalie Parde - UIC CS 421 114
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Computing TF*IDF

e TF-IDF combines TF and
IDF

* tfidftq = tfraxidf




Assume we’'re looking at a
subset of a 37-document
corpus of Shakespearean

@Iays.

,

_J

Example:
Computing
TF-IDF

- TF-IDF(battle, d,) = ?

d, d,
battle 0
good 114 80
fool 36 58
wit 20 15

62

13

89



Example:
Computing
TF-IDF

« TF-IDF(battle, d{) =?
* TF(battle, dq) =1

d, d,
battle @ 0
good 114 80
fool 36 58

wit 20 15

62

13

89



Example:
Computing
TF-IDF good 114 80 62 89

* TF-IDF(battle, dy) = ?
* TF(battle, d{) =1 fool 36

« IDF(battle) = N/DF(battle) =
37121 =1.76

battle 0 7 13

wit 20

Overall document frequencies
from our 37 plays

Natalie Parde - UIC CS 421 118



Example:
Computing
TF-IDF

TF-IDF(battle, d) = ?
TF(battle, d;) = 1

IDF(battle) = N/DF (battle) = 37/21

=1.76

TF-IDF(battle, d{) =1 *1.76 =
1.76

battle 0
good 114 80
fool 36 58
wit 20 15

62

13

89



Example:
Computing
TF-IDF

TF-IDF(battle, d;) = ?
TF(battle, dy) = 1

IDF(battle) = N/DF (battle) = 37/21
=1.76

TF-IDF(battle, dq) =1 *1.76 =
1.76

Alternately, TF-IDF(battle, d,) =
10%10(1 + 1) * lOglO 1.76 =
0.074

battle

good

fool

wit

114

36

20

80

58

15

62

13

89



Example:
Computing
TF-IDF

TF-IDF(battle, d) = ?
TF(battle, d;) = 1

IDF(battle) = N/DF (battle) = 37/21

=1.76

TF-IDF(battle, dq) =1 *1.76 =
1.76

Alternately, TF-IDF(battle, d4) =
logi0(1+ 1) * log,91.76 =0.074

battle 0
good 114 80
fool 36 58
wit 20 15

62

13

89



To convert our
entire term
frequency matrix
to a TF-IDF
matrix, we need
to repeat this
calculation for
each element.

battle
good
fool

wit

0.074

0.000

0.019

0.049

0.000

0.000

0.021

0.044

0.220

0.000

0.004

0.018

0.280

0.000

0.008

0.022



How does the TF-IDF matrix compare
to the original term frequency matrix?

d4 d, ds dy d4 d, ds dy
battle 1 0 7 13 battle 0.074 0.000 0.220 0.280
good 114 80 62 89 good 0.000 0.000 0.000 0.000
fool 36 58 1 4 fool 0.019 0.021 0.004 0.008

wit 20 15 2 3 wit 0.049 0.044 0.018 0.022



How does the TF-IDF matrix compare
to the original term frequency matrix?

d, d, dj d4 d, d, dj d,
battle
1 0 7 13 battle 0.074 0.000 0.220 0.280
——————————————————————————————————— \| '———————————————————————————--——————\
i
£feietd 114 80 62 89 :r——P: good 0.000 0.000 0.000 0.000
N o o e e e e e Y l\ _________________________________
fool
36 0.021 0.004 0.008
wit 20 15 0.044 0.018 0.022

Occurs in every document ...not important in the overall scheme of things!
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How does the TF-IDF matrix compare
to the original term frequency matrix?

d, d, dj d4 d, d, dj d,
----------------------------------- \| I'--_-_--_-----_---__---_---_---—_---\
battle ‘|_,|
1 0 / 13 ; battle 0.074 0.000 0.220 0.280
) i
N e e Y e R Y e N iy g S SN B N N e N S Y e N iy g NN B N

good good

114 0.000 0.000 0.000
o fool

36 58 0.021 0.004 0.008
wit

20 15 0.049 0.044 0.018 0.022

Increases the importance of rarer words like “battle”
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Note that TF-IDF
vectors are sparse.

* Many (usually most)
cells have values of 0

« This can make learning
difficult

battle

good

fool

wit

0.1

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.2

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.3

0.0

0.0

0.0



We'll learn
about other
word

representation
techniques
soon!

* However, TF-IDF remains a useful starting
point for vector space models

* TF-IDF vectors are generally used with
feature-based machine learning algorithms
 Logistic Regression
* Naive Bayes
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Representation learning is the act of building or learning
word vectors based on the distributional hypothesis

|
S u m m a ry = This process seeks to encode the same linguistic phenomena

observed in studies of lexical semantics

I ntrOd u Ctl o n Bag-of-words representations are one form of word vector,

and TF-IDF representations are another

to Ve Cto r TF-IDF representations combine simple term frequency with

inverse document frequency to minimize the impact of

Se m a nti CS words that occur more frequently in general
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